Product Information
ISBN: 9789864344840
出版日期: 2020-04-21
作者: Gavin Hackeling
譯者: 張浩然
裝訂: 平裝.單色印刷.256頁.23.
使用scikit-learn探索各式機器學習模型,實作多種機器學習演算法
機器學習是近年的熱門話題,它將電腦科學與統計學結合在一起,打造智慧又有效率的模型。你可以使用機器學習提供的強大演算法和技術,來自動化任何分析模型,而scikit-learn正是一個優秀的Python機器學習函式庫,它可以實作多種機器學習演算法,是非常好用的工具。
本書詳細介紹一系列機器學習模型和scikit-learn的使用技巧。從機器學習的基礎理論講起,涵蓋了簡單線性迴歸、KNN演算法、特徵提取、多元線性迴歸、邏輯斯迴歸、單純貝氏、非線性分類、決策樹迴歸、隨機森林、感知器、支援向量機、類神經網路、K-MEANS演算法等重要話題。
本書亦詳細討論資料預處理、超參數最佳化和整體(ensemble)方法。你也將學會使用scikit-learn的API,從分類變數、文本和影像之中提取特徵,一步步建立改善模型效能的專業直覺。
適用讀者
本書適合機器學習領域的工程師,也適合想要了解scikit-learn的資料科學家。
在這本書中,你將學到:
・基本概念簡述,如「偏誤」和「變異數」
・建置能夠分類文件、識別影像及偵測廣告的系統
・使用「線性迴歸」和「KNN」預測連續變數的值
・使用「邏輯斯迴歸」和「支援向量機」對文件和影像進行分類
・使用「裝袋法」和「提升法」建立估計器整體
・使用K-MEANS集群發現資料中的隱藏結構
・在常見任務中評估機器學習系統的效能
【下載範例程式檔案】
本書的程式碼是由GitHub託管,可以在如下網址找到:
github.com/PacktPublishing/Mastering-Machine-Learning-with-scikit-learn-Second-Edition
作者簡介
Gavin Hackeling
作者簡介
Gavin Hackeling
Gavin Hackeling是一名資料科學家和作家。他研究過各式各樣的機器學習問題,包括自動語音辨識、文件分類、物件辨識以及語義分割。他畢業於北卡羅來納大學和紐約大學。目前他和妻子與愛貓一起生活在布魯克林。

Shipping Information
Zone | Order Total (RM) | Delivery Fee (RM) |
---|---|---|
West Malaysia | Flat Rate | 6.00 |
Zone | Items/Weight | Delivery Fee (RM) |
---|---|---|
East Malaysia | First 1.00 kg | 13.00 |
Extra 1.00 kg | 5.00 | |
Singapore | First 1.00 kg | 25.00 |
Extra 1.00 kg | 5.00 | |
Australia, New Zealand | First 1.00 kg | 159.77 |
Extra 0.50 kg | 52.65 | |
Austria, Denmark, Finland, Ireland, Switzerland, Russia | First 1.00 kg | 157.78 |
Extra 0.50 kg | 34.31 | |
Brunei, Cambodia, Laos, Mongolia | First 1.00 kg | 175.10 |
Extra 0.50 kg | 87.14 | |
Belgium,France, Germany, Netherlands, Spain, U.K | First 1.00 kg | 150.94 |
Extra 0.50 kg | 30.46 | |
China | First 1.00 kg | 96.44 |
Extra 0.50 kg | 25.35 | |
Bangladesh, Brazil, Iraq, Pakistan, Qatar, S.Arabia, UAE, Sri Lanka | First 1.00 kg | 118.52 |
Extra 0.50 kg | 24.96 | |
South Africa | First 1.00 kg | 118.52 |
Extra 0.50 kg | 24.96 | |
Philippines | First 1.00 kg | 91.42 |
Extra 0.50 kg | 15.29 | |
Canada, United States, Mexico | First 1.00 kg | 162.58 |
Extra 0.50 kg | 35.90 | |
Hong Kong | First 1.00 kg | 80.63 |
Extra 0.50 kg | 29.06 | |
India | First 1.00 kg | 113.30 |
Extra 0.50 kg | 22.28 | |
Indonesia | First 1.00 kg | 107.35 |
Extra 0.50 kg | 24.87 | |
Japan | First 1.00 kg | 112.97 |
Extra 0.50 kg | 35.03 | |
Macau | First 1.00 kg | 92.93 |
Extra 0.50 kg | 13.82 | |
Singapore | First 1.00 kg | 74.75 |
Extra 0.50 kg | 21.49 | |
Taiwan | First 1.00 kg | 94.42 |
Extra 0.50 kg | 34.76 | |
Thailand | First 1.00 kg | 94.10 |
Extra 0.50 kg | 28.25 | |
Vietnam | First 1.00 kg | 98.94 |
Extra 0.50 kg | 14.34 |