ISBN: 9789863126386
出版日期: 2020-09-07
作者: Jakub Langr,Vladimir Bok
譯者: 哈雷
裝訂: 平裝.部份全彩.336頁.23.
「GAN 是近年來機器學習領域中最有趣的點子!」這是臉書首席 AI 科學家、也是當今深度學習三巨頭之一的 Yann LeCun 對 GAN (對抗式生成網路) 技術下的註解。
GAN 從誕生至今已經創造了許多令人瞠目結舌的驚人應用,從最早貓圖片的自動產生器、虛擬人臉生成器、到 Deepfake 影片/照片換臉特效,都是 GAN 的應用。光是 GAN 的開山論文,被引用次數就足足是 TensorFlow 的 2.5 倍,不只在技術領域,就連麥肯錫 (McKinsey & Company) 等主流媒體,GAN 的相關討論也時常出現。
但要搞懂這最尖端、最熱門的技術可不容易,網路上許多似是而非的說法,加上漏洞百出的數學推導,讓初學者不得其門而入。
本書目標是針對想從基礎開始學習 GAN(對抗式生成網路)的人,提供最可靠的原理教學與實戰指南。我們將從最簡單的範例開始上手,然後介紹各種最先進的 GAN 技術並用程式實作,包括生成高解析度圖片、圖像轉譯、或製作對抗性樣本等。我們會提供最直觀的解說,讓讀者只需要具備基礎的 Python、深度學習、與數學相關知識,就能直接探索這項如魔法般的尖端科技。
我們希望讀者不但能了解 GAN 到目前為止所取得的成就,還能獲得必要的知識與工具來充實自己,以便進一步展開新的應用。對於充滿企圖心的人來說,GAN 可是具有無窮的潛力,一旦上手,未來在學術界或生活應用上必能大放異彩,很高興您能加入我們的行列。
本書特色
●本書由施威銘研究室監修,內容易讀易懂,並加入大量「編註」與「小編補充」以幫助理解及補充必要知識。
●內容涵蓋 Autoencoder/VAE 及各種 GAN 技術,包括 DCGAN、PGGAN、SGAN、CGAN、CycleGAN、NS-GAN、Min-Max GAN、WGAN、BigGANigGAN、StyleGAN、...等,還有對抗性樣本、以及 GAN 在醫學界與時尚界的應用案例。
●不求花俏吸睛,腳踏實地帶你一步步揭開各種 GAN 的神祕面紗。從原理、演算法、架構圖、再到程式實作,讓您一氣呵成、深入體驗 GAN 的奧妙。
●所有範例程式小編都已在 Colab 上實測過,並針對可能因版本不同而遇到的狀況提供說明及解決方案。建議讀者也在免費的 Colab 上執行範例程式,可避免一些環境設定或相容性等問題。
名人推薦
"全面且深入介紹了 AI 的未來" - Simeon Leyzerzon, Excelsior Software
"超級實用, 將理論與實作完美整合" - Dana Robinson, The HDF Group
"對於發展快速且應用廣泛的 GAN 知識, 做了非常有系統的介紹" - Grigory V. Sapunov, Intento
"出色的寫作、加上易於理解的數學解釋" - Bachir Chihani, C3
"在「程式設計書、學術理論書、網誌」之間取得了極佳的平衡" - Erik Sapper博士, 加利福尼亞州立理工大學
作者簡介
Jakub Langr,Vladimir Bok
作者簡介
Jakub Langr
畢業於牛津大學,是一間新創公司的聯合創始人,該公司使用 GAN 進行創意和廣告應用。Jakub 自 2013 年起就一直從事資料科學工作,最近則是在 Filtered.com 負責資料科學技術,並在 Mudano 從事資料科學研發工作。他還在伯明翰大學(英國)和眾多民營公司設計並教授資料科學課程,另兼任牛津大學客座講師。他也是《Entrepreneur First》第七屆深度技術人才投資者中的一位駐點創業者。Jakub 還是皇家統計學會的研究員,並受邀在各種國際會議上發表演說。他將本書的全部收益捐給英國非營利心臟基金會。
Vladimir Bok
以優異成績取得哈佛大學計算機科學學士學位。他是在微軟研究院從事音樂風格轉換的相關研究時,見證到 GAN 的巨大潛力。他的工作經驗豐富,從 Y Combinator 投資的新創公司應用資料科學部門,到微軟的領導跨職能計劃皆有涉入。Vladimir 最近在紐約的一家新創公司管理資料科學專案,該公司針對線上旅行與電子商務網站提供機器學習服務,其中不乏《財訊》所列的五百大企業。他將本書的所有收益捐給非營利組織《Girls Who Code》。

Zone | Order Total (RM) | Delivery Fee (RM) |
---|---|---|
West Malaysia | Flat Rate | 6.00 |
Zone | Items/Weight | Delivery Fee (RM) |
---|---|---|
East Malaysia | First 1.00 kg | 13.00 |
Extra 1.00 kg | 5.00 | |
Singapore | First 1.00 kg | 25.00 |
Extra 1.00 kg | 5.00 | |
Australia, New Zealand | First 1.00 kg | 159.77 |
Extra 0.50 kg | 52.65 | |
Austria, Denmark, Finland, Ireland, Switzerland, Russia | First 1.00 kg | 157.78 |
Extra 0.50 kg | 34.31 | |
Brunei, Cambodia, Laos, Mongolia | First 1.00 kg | 175.10 |
Extra 0.50 kg | 87.14 | |
Belgium,France, Germany, Netherlands, Spain, U.K | First 1.00 kg | 150.94 |
Extra 0.50 kg | 30.46 | |
China | First 1.00 kg | 96.44 |
Extra 0.50 kg | 25.35 | |
Bangladesh, Brazil, Iraq, Pakistan, Qatar, S.Arabia, UAE, Sri Lanka | First 1.00 kg | 118.52 |
Extra 0.50 kg | 24.96 | |
South Africa | First 1.00 kg | 118.52 |
Extra 0.50 kg | 24.96 | |
Philippines | First 1.00 kg | 91.42 |
Extra 0.50 kg | 15.29 | |
Canada, United States, Mexico | First 1.00 kg | 162.58 |
Extra 0.50 kg | 35.90 | |
Hong Kong | First 1.00 kg | 80.63 |
Extra 0.50 kg | 29.06 | |
India | First 1.00 kg | 113.30 |
Extra 0.50 kg | 22.28 | |
Indonesia | First 1.00 kg | 107.35 |
Extra 0.50 kg | 24.87 | |
Japan | First 1.00 kg | 112.97 |
Extra 0.50 kg | 35.03 | |
Macau | First 1.00 kg | 92.93 |
Extra 0.50 kg | 13.82 | |
Singapore | First 1.00 kg | 74.75 |
Extra 0.50 kg | 21.49 | |
Taiwan | First 1.00 kg | 94.42 |
Extra 0.50 kg | 34.76 | |
Thailand | First 1.00 kg | 94.10 |
Extra 0.50 kg | 28.25 | |
Vietnam | First 1.00 kg | 98.94 |
Extra 0.50 kg | 14.34 |