Product Information
ISBN: 9789860776515
出版日期: 2021-11-20
作者: 彭南博,王虎
裝訂: 平裝.單色印刷.416頁.23.
「聯邦學習」可以解決企業之間的資料孤島問題,讓企業能透過使用更多資料來提高AI模型的效果,提供給使用者更方便的個性化服務。在過程中,資料是安全的,使用者的隱私資訊不會被輸出和洩露。因此這項技術不會損害合作企業的利益,還能帶來額外的收益。對使用者而言,能享受個性化服務品質的提升,也不用擔心具體隱私資訊的傳播。
從技術層面來看,聯邦學習是密碼學、分散式運算、機器學習三個學科交換的技術,涉及面較廣且部署實施難度大,很多具體問題需要跨領域的綜合知識才能解決。在人才市場中,此類的綜合型人才十分缺乏,許多專案都面臨無人可用的困境。另一方面,越來越多人關注到聯邦學習新興技術,希望能有系統地掌握聯邦學習原理,並在產業應用中解決實際問題。
本書詳細說明聯邦學習的相關概念,同時列出許多案例,適合對聯邦學習感興趣的讀者閱讀。書中會在必要之處列出數學公式,閱讀時需具備統計學的基礎知識。
全書重點涵蓋:
●第1~3章:聯邦學習的基礎,可以了解聯邦學習的市場背景、技術現狀、基礎的隱私保護技術、機器學習技術和分散式運算技術。建議聯邦學習的初學者、求職者重點閱讀這部分,藉以熟悉聯邦學習的基本問題、基本技術。
●第4章:介紹聯邦交集計算的相關理論和具體方法,用於提供聯邦資料之間的對應關係。
●第5章:介紹聯邦特徵工程,列出大致流程、聯邦學習對這些流程的處理想法,引出聯邦學習特徵工程中常用的加密方法、資料互動策略及評估監控方法。
●第6~8章:分別介紹垂直聯邦學習、水平聯邦學習和聯邦遷移學習,並說明這三種方案的架構、方法和案例。垂直聯邦學習用於解決相同使用者在不同企業場景中,產生資料的聯合建模問題。
●第9~12章:聯邦學習的產業應用和展望,可以了解聯邦學習技術的商業應用現狀、挑戰、趨勢、與資料資產和要素市場的連結,據此引發讀者進一步思考。此部分較為巨觀,涉及面廣,適合聯邦學習相關的專案管理者重點閱讀。
本書適合:
●對聯邦學習感興趣的學術&研究人員。
●聯邦學習的初學者&求職者&專案管理者。
●機器學習、資料探勘、產業智慧化領域的從業者&求職者。
作者簡介
彭南博,王虎
作者簡介
彭南博
京東科技集團風險管理中心總監,在人工智慧演算法、風控模型等領域具有豐富的實踐經驗。他負責風險智能模型技術佈局和徹底落實業務,建立了數據、演算法、工程三位一體的大數據應用體系。在聯邦學習應用實踐中,他領導團隊研發聯邦學習技術和產品,為風險業務建立了基於聯邦學習的模型工程架構、模型管理體系、模型監控體系。他於2012年在中國科學院大學獲得博士學位,先後參與三項國家基金項目,發表期刊和會議論文10餘篇,申請專利70餘項。
王虎
京東科技集團風險管理中心演算法科學家,在機器學習和資料探勘領域具有豐富的產業應用經驗。他負責風險場景的模型研發,針對風險數據孤島問題,視察並論證聯邦學習技術的可行性,完成了從0到1的聯邦風控應用創新,負責聯邦組網過程中的演算法研發和模型優化。他於2012年在中國科學院大學獲得博士學位,其後負責並完成了藥物副作用探勘、電力銷量預測、駕駛員狀態分析、基於穿戴式醫療設備的健康評估等機器學習項目。

Shipping Information
Zone | Order Total (RM) | Delivery Fee (RM) |
---|---|---|
West Malaysia | Flat Rate | 6.00 |
Zone | Items/Weight | Delivery Fee (RM) |
---|---|---|
East Malaysia | First 1.00 kg | 13.00 |
Extra 1.00 kg | 5.00 | |
Singapore | First 1.00 kg | 25.00 |
Extra 1.00 kg | 5.00 | |
Australia, New Zealand | First 1.00 kg | 159.77 |
Extra 0.50 kg | 52.65 | |
Austria, Denmark, Finland, Ireland, Switzerland, Russia | First 1.00 kg | 157.78 |
Extra 0.50 kg | 34.31 | |
Brunei, Cambodia, Laos, Mongolia | First 1.00 kg | 175.10 |
Extra 0.50 kg | 87.14 | |
Belgium,France, Germany, Netherlands, Spain, U.K | First 1.00 kg | 150.94 |
Extra 0.50 kg | 30.46 | |
China | First 1.00 kg | 96.44 |
Extra 0.50 kg | 25.35 | |
Bangladesh, Brazil, Iraq, Pakistan, Qatar, S.Arabia, UAE, Sri Lanka | First 1.00 kg | 118.52 |
Extra 0.50 kg | 24.96 | |
South Africa | First 1.00 kg | 118.52 |
Extra 0.50 kg | 24.96 | |
Philippines | First 1.00 kg | 91.42 |
Extra 0.50 kg | 15.29 | |
Canada, United States, Mexico | First 1.00 kg | 162.58 |
Extra 0.50 kg | 35.90 | |
Hong Kong | First 1.00 kg | 80.63 |
Extra 0.50 kg | 29.06 | |
India | First 1.00 kg | 113.30 |
Extra 0.50 kg | 22.28 | |
Indonesia | First 1.00 kg | 107.35 |
Extra 0.50 kg | 24.87 | |
Japan | First 1.00 kg | 112.97 |
Extra 0.50 kg | 35.03 | |
Macau | First 1.00 kg | 92.93 |
Extra 0.50 kg | 13.82 | |
Singapore | First 1.00 kg | 74.75 |
Extra 0.50 kg | 21.49 | |
Taiwan | First 1.00 kg | 94.42 |
Extra 0.50 kg | 34.76 | |
Thailand | First 1.00 kg | 94.10 |
Extra 0.50 kg | 28.25 | |
Vietnam | First 1.00 kg | 98.94 |
Extra 0.50 kg | 14.34 |