Product Information
ISBN: 9786263331778
出版日期: 2022-07-15
作者: Imran Ahmad
譯者: 何敏煌
裝訂: 平裝.單色印刷.384頁.23.
不管是在計算的科學與實務上,演算法總是扮演重要的角色。除了傳統的計算之外,對任何一個開發者或程式設計師而言,使用演算法解決實務問題的能力是非常重要且必須具備的技巧。本書不只會幫助你發展選用的技術以及使用演算法以解決實務問題,同時也能理解這些演算法是如何運作的。
本書從演算法的介紹開始,並說明各種演算法的設計技巧,再佐以實際範例來協助探討如何實作不同類型的演算法,諸如搜尋與排序。當你要進階更複雜的演算法集合時,你將會學到線性規劃、頁面排名以及各種圖(graph),甚至跨入AI領域學習如何使用機器學習演算法,並瞭解它們背後的數學與邏輯。隨後將更進一步探討一些案例研究,像是天氣預測、推文分群以及電影推薦引擎等等,瞭解如何應用這些演算法以達到最佳化。最終,你將精通平行處理技術的運用,讓你有能力可以使用這些演算法在計算密集的任務上。
讀完本書,你將精通各式各樣的演算法來解決職場上的電腦運算問題。
本書範例檔:
github.com/packtpublishing/40-algorithms-every-programmer-should-know
本書特色
☛學習現存於Python程式庫中的資料結構及演算法
☛了解如何實作圖形演算法,並藉由網路分析進行詐欺偵測
☛學會使用機器學習演算法,即時進行相似推文的分群並處理Twitter資料
☛學會使用監督式學習演算法預測天氣
☛學會使用Siamese Neural Networks執行單張影像的辨識
☛建立一個推薦引擎,向訂閱者建議相關的電影
☛部署機器學習模型時,使用對稱及非對稱加密,實作萬無一失的安全機制
作者簡介
Imran Ahmad
作者簡介
Imran Ahmad
Imran Ahmad是Google的合格講師,他在Google和Learning Tree有許多年的教學經驗。Imran教授的主題包括Python、機器學習、演算法、大數據以及深度學習。在他的博士學位中,他提出了一個基於線性規劃的演算法,稱之為ATSRA,此演算法應用在雲端環境的最佳化資源指派上。過去四年裡,Imran在加拿大聯邦政府先進分析實驗室進行高規格機器學習專案工作,此專案主要是為了開發機器學習演算法,讓移民程序可以自動化。Imran目前的工作是在開發使用GPU最佳化的演算法,以訓練複雜的機器學習模型。

Shipping Information
Zone | Order Total (RM) | Delivery Fee (RM) |
---|---|---|
West Malaysia | Flat Rate | 6.00 |
Zone | Items/Weight | Delivery Fee (RM) |
---|---|---|
East Malaysia | First 1.00 kg | 13.00 |
Extra 1.00 kg | 5.00 | |
Singapore | First 1.00 kg | 25.00 |
Extra 1.00 kg | 5.00 | |
Australia, New Zealand | First 1.00 kg | 159.77 |
Extra 0.50 kg | 52.65 | |
Austria, Denmark, Finland, Ireland, Switzerland, Russia | First 1.00 kg | 157.78 |
Extra 0.50 kg | 34.31 | |
Brunei, Cambodia, Laos, Mongolia | First 1.00 kg | 175.10 |
Extra 0.50 kg | 87.14 | |
Belgium,France, Germany, Netherlands, Spain, U.K | First 1.00 kg | 150.94 |
Extra 0.50 kg | 30.46 | |
China | First 1.00 kg | 96.44 |
Extra 0.50 kg | 25.35 | |
Bangladesh, Brazil, Iraq, Pakistan, Qatar, S.Arabia, UAE, Sri Lanka | First 1.00 kg | 118.52 |
Extra 0.50 kg | 24.96 | |
South Africa | First 1.00 kg | 118.52 |
Extra 0.50 kg | 24.96 | |
Philippines | First 1.00 kg | 91.42 |
Extra 0.50 kg | 15.29 | |
Canada, United States, Mexico | First 1.00 kg | 162.58 |
Extra 0.50 kg | 35.90 | |
Hong Kong | First 1.00 kg | 80.63 |
Extra 0.50 kg | 29.06 | |
India | First 1.00 kg | 113.30 |
Extra 0.50 kg | 22.28 | |
Indonesia | First 1.00 kg | 107.35 |
Extra 0.50 kg | 24.87 | |
Japan | First 1.00 kg | 112.97 |
Extra 0.50 kg | 35.03 | |
Macau | First 1.00 kg | 92.93 |
Extra 0.50 kg | 13.82 | |
Singapore | First 1.00 kg | 74.75 |
Extra 0.50 kg | 21.49 | |
Taiwan | First 1.00 kg | 94.42 |
Extra 0.50 kg | 34.76 | |
Thailand | First 1.00 kg | 94.10 |
Extra 0.50 kg | 28.25 | |
Vietnam | First 1.00 kg | 98.94 |
Extra 0.50 kg | 14.34 |